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Abstract. Within the framework of a recent model for car accidents on single-lane highway
traffic, we study analytically the probability of the occurrence of car accidents. Exact results are
obtained. Various scaling behaviours are observed. The linear dependence of the occurrence of
car accidents on density is understood as the dominance of a single velocity in the distribution.

Recently, traffic problems have attracted considerable attention [1]. Among the various
approaches applied to describe the traffic flow, the cellular automata models are capable of
reproducing many characteristic features. The basic model consists ofN cars moving on
a one-dimensional lattice ofL sites with periodic boundary conditions. Each site can be
either empty, or occupied by exactly one car. All cars can only move in one direction. The
velocity of each car is an integer between 0 andv, wherev is the speed limit and is often
taken to be 5 [2]. The position of theith car at timet is denoted byx(i, t). The position of
the car ahead at timet is thenx(i + 1, t). The system evolves according to the following
synchronous rule

x(i, t + 1) = x(i, t)+min{x(i + 1, t)− x(i, t)− 1, x(i, t)− x(i, t − 1)+ a, v}. (1)

The three termsx(i+1, t)− x(i, t)−1, x(i, t)− x(i, t −1)+ a andv represent the driving
schemes respecting the safety distance, accelerationa and the speed limit, respectively. The
case ofa = 1 corresponds to a well known model [2], while the case ofa = v can be
considered as a variation for aggressive driving [3]. In this last case, the evolution rule can
be written as

x(i, t + 1) = x(i, t)+min{x(i + 1, t)− x(i, t)− 1, v}. (2)

More recently, the occurrence of car accidents has been studied numerically within this
framework [4]. Car accidents occur when drivers do not respect the safety distance, which
often happens when the car ahead is moving. At timet , if the velocity of cari+1 is positive,
expecting this velocity to remain positive at timet + 1, the driver of cari increases the
safety velocity by one unit, with probabilityp. The safety distancex(i + 1, t)− x(i, t)− 1
in equation (2) is replaced byx(i + 1, t) − x(i, t), with probability p. If the car i + 1
stops at timet + 1, this careless driving will result in an accident. The probabilityper car
and per time stepfor an accident to occur is denoted byPac. In [4], the value ofPac as a
function of car densityρ = N/L is studied numerically for a special casev = 3. When the
car density is less than the critical valueρc = (1+ v)−1, no accident occurs. The average
velocity is v and the average distance between two consecutive cars is larger thanv. The
fraction of stationary cars, which is denoted byn0, is zero. Whenρ > ρc, the average
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velocity decreases withρ, the average distance decreases withρ, the fractionn0 increases
with ρ, and careless driving will result in a number of accidents. In the case ofρ = 1,
all cars are stopped and no accident occurs. The probability for a car accident to occur is
observed, as expected, to reach a maximum for a car density betweenρc and 1.

In the following, we present the exact results for these numerical features. Exact results
are obtained for the casea = v, i.e. the evolution rule of equation (2). The explicit
expression for the distributionPac(ρ) is also given.

For a careless driver to have an accident, the necessary conditions are such that the next
car ahead is moving at timet and then stopped at timet + 1. These conditions at different
time steps can be replaced by conditions at the same time step. The car ahead stops at time
t + 1 because that two cars ahead stops at timet . Thus the criteria for an accident to occur
can be rewritten as four constraints at the same time step: at timet , (1) the velocity of the
car ahead is positive, (2) the velocity of the second car ahead is zero, (3) the number of
empty sites to the car ahead is less thanv, and (4) the number of empty sites between the
car ahead and that two cars ahead is zero. With these four constraints satisfied, an accident
is expected to occur with probabilityp. Obviously,Pac is proportional top.

For the model without car accidents, a phenomenological mean-field theory turns out to
be exact [3]. The same results can also be obtained by constructing the microscopic Boolean
variable [5]. (In the case ofa = 1, the mean-field theory only provides an approximate
result [6].)

Let d be the probability for a site being empty. The fractions of cars with various
velocities can be related to the probabilityd as

ni =
{
di(1− d) for 06 i < v

di for i = v (3)

whereni denotes the fraction of cars with velocityi and the effects of correlations have
been included. With the known results of the car flow, an equation ford can be obtained

v∑
i=1

di = 1− ρ
ρ

. (4)

In principle, theρ-dependence of probabilityd, and thusni , can be determined explicitly.
In [4], neglecting correlations, the probabilityd was taken as 1− ρ. With a further

assumption onn0, a crude approximation was obtained forPac. The analytical expression
for the probabilityPac can be obtained within the mean-field theory, where the value ofPac

is written as

Pac= p

ρ

( v∑
i=1

ρ ni

)
(ρn0)

( v−1∑
n=0

dn
)
. (5)

The summation overi results in the probability for a site being occupied by a car with
positive velocity, which provides the constraint on the velocity of the car ahead. The term
ρn0 is the probability for a site being occupied by a car with zero velocity, which then
provides the constraint on the velocity of the car two cars ahead. The summation overn

takes into account the constraint on the number of empty sites to the car ahead. With a
factord0 (=1) assumed, the number of empty sites between the car ahead and that two cars
ahead, is zero.

With the help of equation (4), the probabilityPac can be reduced to

Pac= p(1− ρ)(1− d). (6)
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Figure 1. ProbabilityPac/p as a function of densityρ, for various speed limitsv. The various
symbols are numerical results forv = 1, 2, . . . ,5. The full curves are the corresponding results
from equation (7). The dotted curve is the result of the limitv→∞, equation (10).

The relation betweenPac andρ can thus be established
v∑
i=1

[
1− Pac

p(1− ρ)
]i
= 1− ρ

ρ
. (7)

In principle, theρ-dependence of probabilityPac can be determined explicitly. The results
are shown in figure 1.

In the case ofv = 1, we have

Pac=


0 for ρ < 1

2

p

(
2− 1

ρ

)
(1− ρ) for ρ > 1

2.
(8)

As the densityρ increases, the onset of the probabilityPac occurs at a densityρ = 1
2 and

reaches its maximum(3− 2
√

2)p at a densityρ = 1√
2
.

In the case ofv = 2, we have

Pac=


0 for ρ < 1

3

p

(
3

2
−
√

1

ρ
− 3

4

)
(1− ρ) for ρ > 1

3.
(9)
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Figure 2. ProbabilityPac/p as a function of the shifted density(ρ − ρc). The symbols are the
same as in figure 1.

The onset of the probabilityPac occurs at a densityρ = 1
3 and reaches its maximum

0.217 211p at a densityρ = 0.609 674; (exact expressions for these numbers can also be
found, which are not shown).

As the speed limitv increases, the value ofPac also increases. The onset ofPac reduces
to a densityρ = (1+v)−1 and the density for the maximumPac also shifts to a lower value.
In the limit v→∞, i.e. without imposing a speed limit, the probability for an accident to
occur becomes

Pac= pρ(1− ρ). (10)

The value ofPac has a maximum1
4 p at a densityρ = 1

2, see figure 1.
With the analytical expression of equation (7), various properties for the occurrence of

car accidents can be studied in detail. Around the critical densityρc = (1+ v)−1, the onset
of probabilityPac is linear,

Pac∼ 2p(ρ − ρc). (11)

It is interesting to note that a universal value of the slope is observed, see figure 2. The
slope of the rise has a value of 2p, which is independent of the speed limitv. However,
in the limiting case,v → ∞, the slope becomesp, see equation (10) and figure 2. It is
an indication that the simple result of equation (10) is not trivial and cannot be obtained
perturbatively.
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Figure 3. ProbabilityPac/p as a function of densityρ, for various speedvn. (vn is the velocity
of the car ahead of the careless driver.) The symbols and full curve are the same as in figure 1
for v = 5.

At very high density,ρ ∼ 1, we observe another linear behaviour betweenPac andρ,

Pac∼ p(1− ρ) (12)

which is also universal, see figure 1. A linear drop is noticed with a universal slope at a
value of−p.

Next we study the velocity distribution of cars which resulted in an accident. Rewriting
equation (5), the probabilityPac can be decomposed into contributions from various
velocities,

Pac=
v∑
i=1

Pac,i (13)

=
v∑
i=1

[
p

ρ
(ρni)(ρn0)

( v−1∑
n=0

dn
)]

(14)

where the indexi denotes the velocity of the car being hit, i.e. the car ahead to the careless
driver. The results are shown in figure 3 (the indexi is denoted byvn in the figure). Around
the critical densityρc, most of the cars being hit from behind drive with the maximum
velocity v. As the density increases, the accidents resulting from cars driving with slower
velocities increases. The rate of increase is the largest for the slowest cars,vn = 1, and
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Figure 4. ProbabilityPac/p as a function of densityρ, for various speedvac. (vac is the velocity
of the careless driver.) The symbols and full curve are the same as in figure 1 forv = 5.

decreases with the increase of velocity. We note that stationary cars will not be hit in this
model. Around the highest density,ρ = 1, most of the cars being hit drive with the lowest
velocity, vn = 1.

The probabilityPac can also be decomposed into contributions from various velocities
of the careless driver (which is denoted byvac in the figure.) The results are shown in
figure 4. Similar features are also observed. The linear behaviours around the densitiesρc

and 1 can be understood as the result of one velocity dominating over others. Around the
critical densityρc, most of the accidents result from cars driving with maximum velocity
v, for both vac andvn; while close toρ = 1, the dominant velocity becomes that with the
lowest value, i.e.vac= vn = 1.

In summary, we study analytically the occurrence of car accidents in a traffic model.
The exact results are obtained from the phenomenological mean-field theory. The explicit
expression for the probability of the occurrence of car accidents is presented. The universal
scaling behaviour and the distribution of velocities in accidents are studied.
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